Neural-network-enabled molecular dynamics study of HfO2 phase transitions
Financiación H2020 / H2020 Funds
Resumen: he advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which ab initio MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the r2⁢SCAN potential energy landscape of HfO2. Based on an automatic differentiable implementation of the isothermal-isobaric (⁢⁢) ensemble with flexible cell fluctuations, we study the phase space of HfO2. We find excellent predictive capabilities regarding the lattice constants and experimental x-ray diffraction data. The phase transition away from monoclinic is clearly visible at a temperature around 2000 K, in agreement with available experimental data and previous calculations. Another abrupt change in lattice constants occurs around 3000 K. While the resulting lattice constants are closer to cubic, they exhibit a small tetragonal distortion, and there is no associated change in volume. We show that this high-temperature structure is in agreement with the available high-temperature diffraction data.
Idioma: Inglés
DOI: 10.1103/PhysRevB.110.174105
Año: 2024
Publicado en: Physical Review B 110, 17 (2024), 174105 [7 pp.]
ISSN: 2469-9950

Financiación: info:eu-repo/grantAgreement/EC/H2020/826060/EU/Periodic Reporting for period 3 - AI4DI (Artificial Intelligence for Digitizing Industry)/AI4DI
Tipo y forma: Article (PostPrint)
Exportado de SIDERAL (2024-11-29-13:25:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-11-29, modifiée le 2024-11-29


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)