Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics
Resumen: In this paper we focus on the interplay between the behaviour of the Frölicher spectral sequence and the existence of special Hermitian metrics on the manifold, such as balanced, SKT or generalized Gauduchon. The study of balanced metrics on nilmanifolds endowed with strongly non-nilpotent complex structures allows us to provide infinite families of compact balanced manifolds with Frölicher spectral sequence not degenerating at the second page. Moreover, this result is extended to non-degeneration at any arbitrary page. Similar results are obtained for the Frölicher spectral sequence of compact generalized Gauduchon manifolds. We also find a compact SKT manifold whose Frölicher spectral sequence does not degenerate at the second page, thus providing a counterexample to a conjecture by Popovici.
Idioma: Inglés
DOI: 10.1007/s10455-024-09972-x
Año: 2024
Publicado en: Annals of Global Analysis and Geometry 66, 3 (2024), 14 [28 pp.]
ISSN: 0232-704X

Factor impacto JCR: 0.7 (2024)
Categ. JCR: MATHEMATICS rank: 239 / 483 = 0.495 (2024) - Q2 - T2
Factor impacto SCIMAGO: 0.619 - Geometry and Topology (Q2) - Analysis (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-09-22-14:49:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-12-12, last modified 2025-09-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)