A reverse Rogers-Shephard inequality for log-concave functions
Resumen: We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of \ell _p-diferences of convex bodies under the condition that their polar bodies have opposite barycenters.
Idioma: Inglés
DOI: 10.1007/s12220-018-9991-8
Año: 2019
Publicado en: JOURNAL OF GEOMETRIC ANALYSIS 29, 1 (2019), 299-315
ISSN: 1050-6926

Factor impacto JCR: 0.924 (2019)
Categ. JCR: MATHEMATICS rank: 130 / 323 = 0.402 (2019) - Q2 - T2
Factor impacto SCIMAGO: 1.662 - Geometry and Topology (Q1)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-01-03-13:20:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-01-03, last modified 2025-01-03


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)