Fully automatic deep convolutional approaches for the screening of neurodegeneratives diseases using multi-view OCT images
Resumen: The prevalence of neurodegenerative diseases (NDDs) such as Alzheimer’s (AD), Parkinson’s (PD), Essential tremor (ET), and Multiple Sclerosis (MS) is increasing alongside the aging population. Recent studies suggest that these disorders can be identified through retinal imaging, allowing for early detection and monitoring via Optical Coherence Tomography (OCT) scans. This study is at the forefront of research, pioneering the application of multi-view OCT and 3D information to the neurological diseases domain. Our methodology consists of two main steps. In the first one, we focus on the segmentation of the retinal nerve fiber layer (RNFL) and a class layer grouping between the ganglion cell layer and Bruch’s membrane (GCL-BM) in both macular and optic disc OCT scans. These are the areas where changes in thickness serve as a potential indicator of NDDs. The second phase is to select patients based on information about the retinal layers. We explore how the integration of both views (macula and optic disc) improves each screening scenario: Healthy Controls (HC) vs. NDD, AD vs. NDD, ET vs. NDD, MS vs. NDD, PD vs. NDD, and a final multi-class approach considering all four NDDs. For the segmentation task, we obtained satisfactory results for both 2D and 3D approaches in macular segmentation, in which 3D performed better due to the inclusion of depth and cross-sectional information. As for the optic disc view, transfer learning did not improve the metrics over training from scratch, but it did provide a faster training. As for screening, 3D computational biomarkers provided better results than 2D ones, and multi-view methods were usually better than the single-view ones. Regarding separability among diseases, MS and PD were the ones that provided better results in their screening approaches, being also the most represented classes. In conclusion, our methodology has been successfully validated with an extensive experimentation of configurations, techniques and OCT views, becoming the first multi-view analysis that merges data from both macula-centered and optic disc-centered perspectives. Besides, it is also the first effort to examine key retinal layers across four major NDDs within the framework of pathological screening.
Idioma: Inglés
DOI: 10.1016/j.artmed.2024.103006
Año: 2024
Publicado en: ARTIFICIAL INTELLIGENCE IN MEDICINE 158 (2024), 103006 [20 pp.]
ISSN: 0933-3657

Financiación: info:eu-repo/grantAgreement/ES/AEI/TED2021-131201B-I00
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/FORT23-00010
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/PI17-01726
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/PI20-00437
Financiación: info:eu-repo/grantAgreement/ES/ISCIII-RICORDS/RD21-0002-0050
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133132-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2023-148913OB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Oftalmología (Dpto. Cirugía)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-01-09-14:42:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Oftalmología



 Registro creado el 2025-01-09, última modificación el 2025-01-09


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)