Analysis and prediction of wear in interchangeable milling insert tools using artificial intelligence techniques
Resumen: Milling machines remain relevant in modern manufacturing, with tool optimization being crucial for cost reduction. Inserts for compound cutting tools can reduce the cost of operations by optimizing their lifespan. This study analyzes the flank wear of cutting tools in milling machines, with an emphasis on evaluating different approaches to predict their lifespan. It compares three distinct modeling approaches for predicting tool lifespan using algorithms: traditional ensemble methods (Random Forest, Gradient Boosting) and a deep learning-based LSTM network. Each model is evaluated independently, and this comparative analysis aims to determine which modeling strategy best captures the intricate interactions between various process variables affecting tool wear. This method ensures greater efficiency and accuracy than conventional techniques, providing a scalable, resource-efficient solution for reliable and insightful tool wear predictions. The results obtained from the dataset of an insert tool can be extrapolated to other milling inserts and demonstrate the progression of tool wear over time under varying cutting parameters, providing critical insights for optimizing milling operations. The integration of uncertainty awareness in the predictive outputs is a unique feature of this research and enhances decision-making for smarter manufacturing. This proactive approach enhances operational efficiency and reduces overall production costs. Furthermore, the data-driven, AI-centric methodology developed in this study offers a transferable approach that can be adapted to other machining processes, advancing state-of-the-art tool wear prediction.
Idioma: Inglés
DOI: 10.3390/app142411840
Año: 2024
Publicado en: Applied Sciences (Switzerland) 14, 24 (2024), 11840 [22 pp.]
ISSN: 2076-3417

Factor impacto JCR: 2.5 (2024)
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 50 / 175 = 0.286 (2024) - Q2 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 123 / 239 = 0.515 (2024) - Q3 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 283 / 460 = 0.615 (2024) - Q3 - T2
Categ. JCR: PHYSICS, APPLIED rank: 101 / 187 = 0.54 (2024) - Q3 - T2

Factor impacto SCIMAGO: 0.521 - Engineering (miscellaneous) (Q2) - Computer Science Applications (Q2) - Process Chemistry and Technology (Q2) - Instrumentation (Q2) - Materials Science (miscellaneous) (Q2) - Fluid Flow and Transfer Processes (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Ing. Procesos Fabricación (Dpto. Ingeniería Diseño Fabri.)
Exportado de SIDERAL (2025-09-22-14:44:13)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_los_procesos_de_fabricacion



 Notice créée le 2025-01-10, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)