Instrument selection in panel data models with endogeneity: a Bayesian approach
Resumen: This paper proposes the use of Bayesian inference techniques to search for and obtain valid instruments in dynamic panel data models where endogenous variables may exist. The use of Principal Component Analysis (PCA) allows for obtaining a reduced number of instruments in comparison to the high number of instruments commonly used in the literature, and Monte Carlo Markov Chain (MCMC) methods enable efficient exploration of the instrument space, deriving accurate point estimates of the elements of interest. The proposed methodology is illustrated in a simulated case and in an empirical application, where the partial effect of a series of determinants on the attraction of international bank flows is quantified. The results highlight the importance of promoting and developing the private sector in these economies, as well as the importance of maintaining good levels of creditworthiness.
Idioma: Inglés
DOI: 10.3390/econometrics12040036
Año: 2024
Publicado en: Econometrics 12, 34 (2024), 35
ISSN: 2225-1146

Financiación: info:eu-repo/grantAgreement/ES/DGA/S41-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Métodos Cuant.Econ.Empres (Dpto. Economía Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-01-15-15:07:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Métodos Cuantitativos para la Economíay la Empresa



 Record created 2025-01-15, last modified 2025-01-15


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)