Instrument selection in panel data models with endogeneity: a Bayesian approach
Resumen: This paper proposes the use of Bayesian inference techniques to search for and obtain valid instruments in dynamic panel data models where endogenous variables may exist. The use of Principal Component Analysis (PCA) allows for obtaining a reduced number of instruments in comparison to the high number of instruments commonly used in the literature, and Monte Carlo Markov Chain (MCMC) methods enable efficient exploration of the instrument space, deriving accurate point estimates of the elements of interest. The proposed methodology is illustrated in a simulated case and in an empirical application, where the partial effect of a series of determinants on the attraction of international bank flows is quantified. The results highlight the importance of promoting and developing the private sector in these economies, as well as the importance of maintaining good levels of creditworthiness.
Idioma: Inglés
DOI: 10.3390/econometrics12040036
Año: 2024
Publicado en: Econometrics 12, 34 (2024), 35
ISSN: 2225-1146

Factor impacto SCIMAGO: 0.526 - Economics and Econometrics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/S41-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Métodos Cuant.Econ.Empres (Dpto. Economía Aplicada)
Exportado de SIDERAL (2025-09-08-12:57:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > metodos_cuantitativos_para_la_economiay_la_empresa



 Notice créée le 2025-01-15, modifiée le 2025-09-08


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)