Matching and Recovering 3D People From Multiple Views
Resumen: This paper introduces an approach to simultaneously match and recover 3D people from multiple calibrated cameras. To this end, we present an affinity measure between 2D detections across different views that enforces an uncertainty geometric consistency. This similarity is then exploited by a novel multi-view matching algorithm to cluster the detections, being robust against partial observations as well as bad detections and without assuming any prior about the number of people in the scene. After that, the multi-view correspondences are used in order to efficiently infer the 3D pose of each body by means of a 3D pictorial structure model in combination with physico-geometric constraints. Our algorithm is thoroughly evaluated on challenging scenarios where several human bodies are performing different activities which involve complex motions, producing large occlusions in some views and noisy observations. We outperform state-of-the-art results in terms of matching and 3D reconstruction.
Idioma: Inglés
DOI: 10.1109/WACV51458.2022.00125
Año: 2022
Publicado en: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2022), 3622-3631
ISSN: 2472-6737

Financiación: info:eu-repo/grantAgreement/ES/AEI/PCI2019-103386
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-120049RB
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-10-17-14:28:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Máster Universitario en Ingeniería de Sistemas y Automática



 Registro creado el 2025-01-26, última modificación el 2025-10-17


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)