Efficient computational approaches to obtain periodic orbits in Hamiltonian systems: application to the motion of a lunar orbiter
Financiación FP7 / Fp7 Funds
Resumen: In this paper, we study the problem of computing periodic orbits of Hamiltonian systems providing large families of such orbits. Periodic orbits constitute one of the most important invariants of a system, and this paper provides a comprehensive analysis of two efficient computational approaches for Hamiltonian systems. First, a new version of the grid search method, applied to problems with three degrees of freedom, has been considered to find, systematically, symmetric periodic orbits. To obtain non-symmetric periodic orbits, we use a modification of an optimization method based on an evolutionary strategy. Both methods require a great computational effort to find a big number of periodic orbits, and we apply parallelization tools to reduce the CPU time. Finally, we present a strategy to provide initial conditions of the periodic orbits with arbitrary precision. We apply all these algorithms to the problem of the motion of the lunar orbiter referred to the rotating reference frame of the Moon. The periodic orbits of this problem are very useful from the space engineering point of view because they provide low-cost orbits.
Idioma: Inglés
DOI: 10.1007/s10569-015-9651-2
Año: 2015
Publicado en: Celestial Mechanics and Dynamical Astronomy 124 (2015), 51-71
ISSN: 0923-2958

Factor impacto JCR: 1.594 (2015)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 34 / 101 = 0.337 (2015) - Q2 - T2
Categ. JCR: ASTRONOMY & ASTROPHYSICS rank: 37 / 62 = 0.597 (2015) - Q3 - T2

Factor impacto SCIMAGO: 1.025 - Modeling and Simulation (Q1) - Mathematical Physics (Q1) - Space and Planetary Science (Q2) - Astronomy and Astrophysics (Q2) - Applied Mathematics (Q2) - Computational Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/EC/FP7/ 228398/EU/Pan-European Research infrastructure on High Performance Computing for 21st century Science/HPC-EUROPA2
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-31883
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Área (Departamento): Área Física de la Tierra (Dpto. Física Teórica)


Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-01-27-14:42:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física de la Tierra
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-01-27, last modified 2025-01-27


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)