CM cycles on Kuga–Sato varieties over Shimura curves and Selmer groups
Resumen: Given a modular form f of even weight larger than two and an imaginary quadratic field K satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga–Sato variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes attached to f enjoying the compatibility properties of an Euler system. Then we use Kolyvagin’s method, as adapted by Nekovář to higher weight modular forms, to bound the size of the relevant Selmer group associated to f and K and prove the finiteness of the (primary part) of the Shafarevich–Tate group, provided that a suitable cohomology class does not vanish.
Idioma: Inglés
DOI: 10.1515/forum-2017-0008
Año: 2018
Publicado en: Forum mathematicum 30, 2 (2018), 321-346
ISSN: 0933-7741

Factor impacto JCR: 0.867 (2018)
Categ. JCR: MATHEMATICS rank: 120 / 313 = 0.383 (2018) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 170 / 254 = 0.669 (2018) - Q3 - T3

Factor impacto SCIMAGO: 0.898 - Mathematics (miscellaneous) (Q1) - Applied Mathematics (Q1)

Tipo y forma: Article (PostPrint)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-10-17-14:33:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-01-27, last modified 2025-10-17


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)