High Relative Accuracy With Collocation Matrices of q$$ q $$-Jacobi Polynomials

Delgado, Jorge (Universidad de Zaragoza) ; Orera, Héctor (Universidad de Zaragoza) ; Peña, Juan Manuel (Universidad de Zaragoza)
High Relative Accuracy With Collocation Matrices of q$$ q $$-Jacobi Polynomials
Resumen: Little ‐Jacobi polynomials belong to the field of quantum calculus. This article obtains the bidiagonal decomposition of the collocation matrices of these polynomials, showing that, in many cases, it can be constructed to high relative accuracy (HRA). Then, it can be used to compute with HRA the inverses, eigenvalues, and singular values of these matrices. Numerical experiments are provided and illustrate the excellent results obtained when applying the presented methods.
Idioma: Inglés
DOI: 10.1002/nla.2602
Año: 2025
Publicado en: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 32, 1 (2025), e2602 [9 pp.]
ISSN: 1070-5325

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-10-17-14:34:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2025-02-10, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)