Graded-division algebras and Galois extensions
Resumen: Graded-division algebras are building blocks in the theory of finite-dimensional associative algebras graded by a group G. If G is abelian, they can be described, using a loop construction, in terms of central simple graded-division algebras. On the other hand, given a finite abelian group G, any central simple G-graded-division algebra over a field F is determined, thanks to a result of Picco and Platzeck, by its class in the (ordinary) Brauer group of F and the isomorphism class of a G-Galois extension of F. This connection is used to classify the simple G-Galois extensions of F in terms of a Galois field extension L/F with Galois group isomorphic to a quotient G/K and an element in the quotient Z2(K, L×)/B2(K, F×) subject to certain conditions. Non-simple G-Galois extensions are induced from simple T-Galois extensions for a subgroup T of G. We also classify finite-dimensional G-graded-division algebras and, as an application, finite G-graded-division rings.
Idioma: Inglés
DOI: 10.1016/j.jpaa.2021.106773
Año: 2021
Publicado en: JOURNAL OF PURE AND APPLIED ALGEBRA 225, 12 (2021), 106773 [34 pp.]
ISSN: 0022-4049

Factor impacto JCR: 0.834 (2021)
Categ. JCR: MATHEMATICS rank: 200 / 333 = 0.601 (2021) - Q3 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 220 / 267 = 0.824 (2021) - Q4 - T3

Factor impacto CITESCORE: 1.5 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.866 - Algebra and Number Theory (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/MTM2017-83506-C2-1-P
Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-17R
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-10-17-14:18:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Álgebra



 Record created 2025-03-19, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)