High-relative-accuracy computations with Kac-Murdock-Szegö matrices and their generalizations
Resumen: A linear-time-complexity method to obtain the bidiagonal decomposition of a generalized Kac-Murdock-Szegö matrix is presented. For convenient values of the parameters, it can be obtained with high relative accuracy and it can be also used to compute all eigenvalues, all singular values, the inverse and the solution of some linear systems of equations with high relative accuracy.
Idioma: Inglés
DOI: 10.1007/s40314-025-03137-7
Año: 2025
Publicado en: COMPUTATIONAL & APPLIED MATHEMATICS 44, 188 (2025), [12 pp.]
ISSN: 2238-3603

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:35:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-04-03, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)