AVOCADO: Adaptive Optimal Collision Avoidance Driven by Opinion

Martinez-Baselga, Diego (Universidad de Zaragoza) ; Sebastián, Eduardo (Universidad de Zaragoza) ; Montijano, Eduardo (Universidad de Zaragoza) ; Riazuelo, Luis (Universidad de Zaragoza) ; Sagüés, Carlos (Universidad de Zaragoza) ; Montano, Luis (Universidad de Zaragoza)
AVOCADO: Adaptive Optimal Collision Avoidance Driven by Opinion
Resumen: We present AdaptiVe Optimal Collision Avoidance Driven by Opinion (AVOCADO), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a velocity obstacle's (VO) formulation akin to the optimal reciprocal collision avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/noncooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
Idioma: Inglés
DOI: 10.1109/TRO.2025.3552350
Año: 2025
Publicado en: IEEE Transactions on Robotics 41 (2025), 2495-2511
ISSN: 1552-3098

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2022-139615OB-I00
Financiación: info:eu-repo/grantAgreement/ES/AEI/PRE2020-094415
Financiación: info:eu-repo/grantAgreement/EUR/AEI/TED2021-130224B-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T45-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU19-05700
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-124137OB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-125514NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2025-10-17-14:24:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_sistemas_y_automatica



 Notice créée le 2025-05-08, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)