Biologically-Inspired Melt Electrowriting for the Generationof Highly Biomimetic Functional Myocardium
Financiación H2020 / H2020 Funds
Resumen: In the heart, the specific 3D structure of myocardial layers produces an efficient ejection of blood. When myocardial infarction strikes, this architecture is disrupted, adding a disarranged contraction to the decreased availability of pumping units (cardiomyocytes, CMs). In this work, the alignment of cardiac fibers in a large animal model (pig) is characterized and employ melt electrowriting (MEW) to fabricate a bio-inspired scaffold with diamond-shaped pores. Using human-induced pluripotent stem cell-derived CMs and cardiac fibroblasts, human cardiac tissues with a biomimetic in-plane contraction are generated. MEW-diamond tissues beat macroscopically for over 1 month, with significantly faster kinetics, increased force, and higher conduction velocity than those based on square or rectangular pores. The diamond design induces a specific hiPSC-CM alignment resulting in the observed in-plane contraction. Transcriptomic analysis using bulk RNA-seq reveals diamond-MEW tissues present features of maturation as compared to traditional 2D cultures. Finally, the bio-inspired cardiac tissues are employed to treat an infarction model in athymic rats, showing a significant benefit on systolic function and remodeling, tied to the presence of large grafts of human cells remuscularizing the ventricular wall. All in all, it is demonstrated that the new design generates superior human cardiac tissues with therapeutic capacity.
Idioma: Inglés
DOI: 10.1002/adfm.202420106
Año: 2025
Publicado en: Advanced Functional Materials (2025), 2420106 [20 pp.]
ISSN: 1616-301X

Financiación: info:eu-repo/grantAgreement/ES/DGA/T39-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/874827/EU/Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts/BRAV3
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CD22-00027
Financiación: info:eu-repo/grantAgreement/ES/MCIN/INVESTTRA_PID2022-142807OA-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-008127
Financiación: info:eu-repo/grantAgreement/ES/MCIN/VOLVAD_PID2022-142562OB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-140556OB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:18:16)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras
Artículos > Artículos por área > Teoría de la Señal y Comunicaciones



 Registro creado el 2025-05-20, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)