Eigenvalue Localization for Symmetric Positive Toeplitz Matrices
Resumen: Given a real symmetric matrix, several inclusion and exclusion intervals containing its eigenvalues can be given. In this paper, for symmetric positive Toeplitz matrices, we provide an inclusion interval and, under an additional hypothesis, we also give two disjoint intervals contained in the previous one and containing all the eigenvalues. Examples are included, showing that these two intervals are necessary and that they can provide precise information on the localization of the eigenvalues. Sufficient conditions for positive definiteness are included. Necessary and sufficient conditions for the total positivity of symmetric positive Toeplitz matrices are presented. A characterization of symmetric totally positive circulant matrices is also obtained.
Idioma: Inglés
DOI: 10.3390/axioms14040232
Año: 2025
Publicado en: Axioms 14, 4 (2025), 232 [12 pp.]
ISSN: 2075-1680

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:11:50)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-05-22, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)