New analytic representations of the Lerch transcendent
Resumen: We consider an integral representation of the Lerch transcendent function (z, s, a) of the form (z, s, a) = 1 0h(t, z)g(t, s, a)dt, and two different analytical methods for the approximation of this integral transform to obtain new convergent expansions of the Lerch transcendent in the variable z. The first method uses multi-point Taylor expansions of h(t, z) at certain appropriately selected base points that provides convergent expansions of the Lerch transcendent in terms of elementary functions of z uniformly valid in compact sets of the complex z−plane. The second method expands g(t, s, a) in a Taylor series at a selected point in [0, 1] giving a uniform convergent expansion of (z, s, a) in terms of elementary functions of z valid in a large unbounded region of the complex plane. We provide explicit and/or recursive algorithms for the computation of the coefficients of the expansions. Numerical experiments illustrate the accuracy of the new approximations.
Idioma: Inglés
DOI: 10.1007/s11075-025-02113-w
Año: 2025
Publicado en: NUMERICAL ALGORITHMS (2025), [22 pp.]
ISSN: 1017-1398

Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:20:32)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-06-12, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)