Factorizations and Accurate Computations with Min and Max Matrices

Khiar, Yasmina (Universidad de Zaragoza) ; Mainar, Esmeralda (Universidad de Zaragoza) ; Royo-Amondarain, Eduardo (Universidad de Zaragoza)
Factorizations and Accurate Computations with Min and Max Matrices
Resumen: Min and max matrices are structured matrices that appear in diverse mathematical and computational applications. Their inherent structures facilitate highly accurate numerical solutions to algebraic problems. In this research, the total positivity of generalized Min and Max matrices is characterized, and their bidiagonal factorizations are derived. It is also demonstrated that these decompositions can be computed with high relative accuracy (HRA), enabling the precise computations of eigenvalues and singular values and the solution of linear systems. Notably, the discussed approach achieves relative errors on the order of the unit roundoff, even for large and ill-conditioned matrices. To illustrate the exceptional accuracy of this method, numerical experiments on quantum extensions of Min and L-Hilbert matrices are presented, showcasing their superior precisions compared to those of standard computational techniques.
Idioma: Inglés
DOI: 10.3390/sym17050684
Año: 2025
Publicado en: Symmetry 17, 5 (2025), 684 [13 pp.]
ISSN: 2073-8994

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:21:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-06-12, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)