Resumen: Min and max matrices are structured matrices that appear in diverse mathematical and computational applications. Their inherent structures facilitate highly accurate numerical solutions to algebraic problems. In this research, the total positivity of generalized Min and Max matrices is characterized, and their bidiagonal factorizations are derived. It is also demonstrated that these decompositions can be computed with high relative accuracy (HRA), enabling the precise computations of eigenvalues and singular values and the solution of linear systems. Notably, the discussed approach achieves relative errors on the order of the unit roundoff, even for large and ill-conditioned matrices. To illustrate the exceptional accuracy of this method, numerical experiments on quantum extensions of Min and L-Hilbert matrices are presented, showcasing their superior precisions compared to those of standard computational techniques. Idioma: Inglés DOI: 10.3390/sym17050684 Año: 2025 Publicado en: Symmetry 17, 5 (2025), 684 [13 pp.] ISSN: 2073-8994 Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00 Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)