End-point maximal regularity for the discrete parabolic Cauchy problem and regularity of non-local operators in discrete Besov spaces
Resumen: In this paper we prove both end-point maximal -regularity for the discrete parabolic Cauchy problem and regularity of some non-local operators in discrete Besov spaces. To that aim, we prove characterizations of the discrete Besov spaces in terms of the heat and Poisson semigroups associated with the discrete Laplacian. Moreover, we provide new estimates for the derivatives of the discrete heat kernel and semigroup which are of independent interest.
Idioma: Inglés
DOI: 10.1016/j.jde.2025.113465
Año: 2025
Publicado en: JOURNAL OF DIFFERENTIAL EQUATIONS 440 (2025), 113465 [43 pp.]
ISSN: 0022-0396

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2025-10-17-14:23:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-06-12, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)