Almost fine gradings on algebras and classification of gradings up to isomorphism
Resumen: We consider the problem of classifying gradings by groups on a finite-dimensional algebra A (with any number of multilinear operations) over an algebraically closed field. We introduce a class of gradings, which we call almost fine, such that every G-grading on A is obtained from an almost fine grading on A in an essentially unique way, which is not the case with fine gradings. For abelian G, we give a method of obtaining all almost fine gradings if fine gradings are known. We apply these ideas to the case of semisimple Lie algebras in characteristic 0: to any abelian group grading with nonzero identity component, we attach a (possibly nonreduced) root system Φ and, in the simple case, construct an adapted Φ-grading.
Idioma: Inglés
DOI: 10.4171/DM/1006
Año: 2025
Publicado en: Documenta Mathematica 30, 4 (2025), 887-908
ISSN: 1431-0635

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-23R
Financiación: info:eu-repo/grantAgreement/EUR/ISCII-ERDF/A way to make Europe
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:22:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Álgebra



 Record created 2025-07-02, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)