Almost fine gradings on algebras and classification of gradings up to isomorphism
Resumen: We consider the problem of classifying gradings by groups on a finite-dimensional algebra A (with any number of multilinear operations) over an algebraically closed field. We introduce a class of gradings, which we call almost fine, such that every G-grading on A is obtained from an almost fine grading on A in an essentially unique way, which is not the case with fine gradings. For abelian G, we give a method of obtaining all almost fine gradings if fine gradings are known. We apply these ideas to the case of semisimple Lie algebras in characteristic 0: to any abelian group grading with nonzero identity component, we attach a (possibly nonreduced) root system Φ and, in the simple case, construct an adapted Φ-grading.
Idioma: Inglés
DOI: 10.4171/DM/1006
Año: 2025
Publicado en: Documenta Mathematica 30, 4 (2025), 887-908
ISSN: 1431-0635

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-23R
Financiación: info:eu-repo/grantAgreement/EUR/ISCII-ERDF/A way to make Europe
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)
Exportado de SIDERAL (2025-10-17-14:22:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > algebra



 Notice créée le 2025-07-02, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)