Regular fractional weighted Wiener algebras and invariant subspaces
Resumen: Since the fifties, the interplay between spectral theory, harmonic analysis and a wide variety of techniques based on the functional calculus of operators, has provided useful criteria to find non-trivial closed invariant subspaces for operators acting on complex Banach spaces. In this article, some standard summability methods (mainly the Cesàro summation) are applied to generalize classical results due to Wermer [51] and Atzmon [8] regarding the existence of invariant subspaces under growth conditions on the resolvent of an operator. To do so, an extension of Beurling's regularity criterion [13] is proved for fractional weighted Wiener algebras related with the Cesàro summation of order . At the end of the article, other summability methods are considered for the purpose of finding new sufficient criteria which ensure the existence of invariant subspaces, resulting in several open questions on the regularity of fractional weighted Wiener algebras associated to matrix summation methods defined from non-vanishing complex sequences.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2025.129875
Año: 2026
Publicado en: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 553, 2 (2026), 129875 [35 pp.]
ISSN: 0022-247X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:13:50)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-08-18, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)