An Overview from Physically-Based to Data-Driven Approaches of the Modelling and Simulation of Glioblastoma Progression in Microfluidic Devices
Resumen: In silico models and computational tools are invaluable instruments that complement experiments to improve our understanding of complex phenomena such as cancer evolution. This work offers a perspective on different approaches that can be used for mathematical modeling of glioblastoma, the most common and lethal brain cancer, in microfluidic devices, the most biomimetic in vitro cell culture technique nowadays. These approaches range from purely knowledge-based solutions to data-driven, and hence completely model-free, algorithms. In particular, we focus on hybrid approaches, which combine physically-based and data-driven strategies, demonstrating how this integration can enhance the understanding we get from simulation by revealing the underlying model structure and thus, in turn, the prospective biological mechanism.
Idioma: Inglés
DOI: 10.1007/s11831-025-10291-y
Año: 2025
Publicado en: ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING (2025), [37 pp.]
ISSN: 1134-3060

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-126051OB-C41
Financiación: info:eu-repo/grantAgreement/ES/DGA/T62-230R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-138572OB-C44
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Exportado de SIDERAL (2025-10-17-14:33:33)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras



 Notice créée le 2025-08-26, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)