Panoramic Depth and Semantic Estimation With Frequency and Distortion Aware Convolutions
Resumen: Omnidirectional images reveal advantages when addressing the understanding of the environment due to the 360‐degree contextual information. However, the inherent characteristics of the omnidirectional images add additional problems to obtain an accurate detection and segmentation of objects or a good depth estimation. To overcome these problems, we exploit convolutions in the frequency domain, obtaining a wider receptive field in each convolutional layer, and convolutions in the equirectangular projection, to cope with the image distortion. Both convolutions allow to leverage the whole context information from omnidirectional images. Our experiments show that our proposal has better performance on non‐gravity‐oriented panoramas than state‐of‐the‐art methods and similar performance on oriented panoramas as specific state‐of‐the‐art methods for semantic segmentation and for monocular depth estimation, outperforming the sole other method which provides both tasks.
Idioma: Inglés
DOI: 10.1049/ipr2.70197
Año: 2025
Publicado en: IET Image Processing 19, 1 (2025), e70197 [12 pp.]
ISSN: 1751-9659

Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2021-125209OB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-129410B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2025-10-17-14:22:01)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_sistemas_y_automatica



 Notice créée le 2025-09-19, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)