Borell's inequality and mean width of random polytopes via discrete inequalities
Resumen: Borell's inequality states the existence of a positive absolute constant C>0 such that for every 1≤p≤q(E|〈X,en〉|p)1p≤(E|〈X,en〉|q)1q≤Cqp(E|〈X,en〉|p)1p, whenever X is a random vector uniformly distributed on any convex body K⊆Rn and (ei)i=1n is the standard canonical basis in Rn. In this paper, we will prove a discrete version of this inequality, which will hold whenever X is a random vector uniformly distributed on K∩Zn for any convex body K⊆Rn containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate Ew(KN)∼w(Zlog⁡N(K)) for any convex body K containing the origin in its interior, where KN is the centrally symmetric random polytope KN=conv{±X1,…,±XN} generated by independent random vectors uniformly distributed on K, Zp(K) is the Lp-centroid body of K for any p≥1, and w(⋅) denotes the mean width.
Idioma: Inglés
DOI: 10.1016/j.jco.2025.101993
Año: 2026
Publicado en: JOURNAL OF COMPLEXITY 92 (2026), 101993 [25 pp.]
ISSN: 0885-064X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2021-122126NB-C32
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:33:06)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-09-26, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)