Probabilistic timed Petri nets for clinical pathway design and analysis: a case study
Resumen: The COVID-19 pandemic underscored the need for efficient hospital resource management and standardized patient care. Clinical pathways, structured plans for managing specific conditions, are critical but challenging to design and update. This paper introduces a methodology combining pattern mining and Probabilistic Timed Petri Nets (PTPN) to model, simulate, and evaluate clinical pathways, incorporating probabilistic transitions and continuous-time distributions for activity durations. In collaboration with medical professionals, the proposed methodology has been successfully applied to develop a clinical pathway for anterior cruciate ligament (ACL) ruptures using real data. Iterative refinement addressed data inconsistencies, producing a robust PTPN model that optimizes patient care and resource allocation. Validation using the CASAS database demonstrate the adaptability of the method to different healthcare contexts.
Idioma: Inglés
DOI: 10.1007/s10626-025-00419-4
Año: 2025
Publicado en: DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS 35, 3 (2025), 205-231
ISSN: 0924-6703

Financiación: info:eu-repo/grantAgreement/EUR/AEI/TED2021-130449B-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-113969RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-125514NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Exportado de SIDERAL (2025-10-09-13:25:56)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_sistemas_y_automatica
articulos > articulos-por-area > lenguajes_y_sistemas_informaticos



 Notice créée le 2025-10-02, modifiée le 2025-10-09


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)