A discrete approach to Zhang’s projection inequality
Resumen: In this paper we will provide a new proof of the fact that for any convex body $K\subseteq\R^n$
$$
\frac{{{2n}\choose{n}}}{n^n}n\int_0^\infty r^{n-1}\vol_n(K\cap(re_n+K))dr\leq\frac{(\vol_n(K))^{n+1}}{(\vol_{n-1}(P_{e_n^\perp}(K)))^n},
$$
where $(e_i)_{i=1}^n$ denotes the canonical orthonormal basis in $\R^n$, $P_{e_n^\perp}(K)$ denotes the orthogonal projection of $K$ onto the linear hyperplane orthogonal to $e_n$, and $\vol_k$ denotes the $k$-dimensional Lebesgue measure. This inequality was proved by Gardner and Zhang and it implies Zhang's inequality. We will use our new approach to this inequality in order to prove discrete analogues of this inequality and of an equivalent version of it, where we will consider the lattice point enumerator measure instead of the Lebesgue measure, and show that from such discrete analogues we can recover the aforementioned inequality and, therefore, Zhang's inequality.

Idioma: Inglés
DOI: 10.4153/S0008414X25101624
Año: 2025
Publicado en: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES (2025), [47 pp.]
ISSN: 0008-414X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-11-07-10:25:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-11-07, last modified 2025-11-07


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)