A discrete approach to Zhang’s projection inequality
Resumen: In this paper we will provide a new proof of the fact that for any convex body $K\subseteq\R^n$
$$
\frac{{{2n}\choose{n}}}{n^n}n\int_0^\infty r^{n-1}\vol_n(K\cap(re_n+K))dr\leq\frac{(\vol_n(K))^{n+1}}{(\vol_{n-1}(P_{e_n^\perp}(K)))^n},
$$
where $(e_i)_{i=1}^n$ denotes the canonical orthonormal basis in $\R^n$, $P_{e_n^\perp}(K)$ denotes the orthogonal projection of $K$ onto the linear hyperplane orthogonal to $e_n$, and $\vol_k$ denotes the $k$-dimensional Lebesgue measure. This inequality was proved by Gardner and Zhang and it implies Zhang's inequality. We will use our new approach to this inequality in order to prove discrete analogues of this inequality and of an equivalent version of it, where we will consider the lattice point enumerator measure instead of the Lebesgue measure, and show that from such discrete analogues we can recover the aforementioned inequality and, therefore, Zhang's inequality.

Idioma: Inglés
DOI: 10.4153/S0008414X25101624
Año: 2025
Publicado en: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES (2025), [47 pp.]
ISSN: 0008-414X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-11-07-10:25:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Análisis Matemático



 Registro creado el 2025-11-07, última modificación el 2025-11-07


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)