Low loading copper-based catalysts for effective CO2 hydrogenation to methanol

González-Pizarro, R. (Universidad de Zaragoza) ; Renda, S. (Universidad de Zaragoza) ; Lasobras, J. (Universidad de Zaragoza) ; Soler, J. (Universidad de Zaragoza) ; Menéndez, M. (Universidad de Zaragoza) ; Herguido, J. (Universidad de Zaragoza)
Low loading copper-based catalysts for effective CO2 hydrogenation to methanol
Resumen: Methanol synthesis via CO2 hydrogenation is an emerging Power-to-Liquid (PtL) technology aimed to accelerate the energy transition and the defossilization of key sectors, particularly maritime transport. This study focuses on the study of low loading formulations, to minimize the catalyst cost. Key operational variables including temperature (T), Weight Hourly Space Velocity (WHSV), copper and zinc loadings, and aging state were systematically varied. An overall active phase loading of 10 %wt emerged as optimal. Within this total loading, a 5 %wtCu-5 %wtZn/ZrO2 catalysts delivered higher methanol productivity than 10 %wtCu/ZrO2; however, the bimetallic catalysts showed pronounced deactivation under water-rich atmospheres, establishing 10 %wtCu/ZrO2 as the most promising catalysts. Operating temperature and WHSV exerted a strong, synergistic influence on CH3OH formation; in particular, increasing WHSV shifted the reaction away from thermodynamic control and boosted methanol synthesis. Finally, the catalytic performance of these low-loading catalysts was benchmarked against high-copper-loading methanol catalysts reported in the literature by critically compare their activities as a function of the residence time (τ) calculated at reaction conditions. This assessment revealed that the proposed formulation is highly competitive when compared to most conventional formulation, with a maximum methanol space time yield (STYCH3OH) of 3.9 gCH3OH gCu-1 h-1. This comparison confirms that the catalysts proposed in this study could offer a remarkably more efficient use of the active phase than the conventional high-copper-loading catalysts.
Idioma: Inglés
DOI: 10.1016/j.fuel.2025.137642
Año: 2025
Publicado en: Fuel 408 (2025), 137642 [15 pp.]
ISSN: 0016-2361

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2022-139819OB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T43-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133066-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PRE2023-UZ-26
Financiación: info:eu-repo/grantAgreement/ES/MICIU/JDC2023-052947-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-12-19-14:43:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Tecnologías del Medio Ambiente
Artículos > Artículos por área > Ingeniería Química



 Registro creado el 2025-12-19, última modificación el 2025-12-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)