Extremal and optimal properties of B-bases collocation matrices

Delgado, J. (Universidad de Zaragoza) ; Peña, J.M. (Universidad de Zaragoza)
Extremal and optimal properties of B-bases collocation matrices
Resumen: Totally positive matrices are related with the shape preserving representations of a space of functions. The normalized B-basis of the space has optimal shape preserving properties. Bernstein polynomials, B-splines and rational Bernstein bases are examples of normalized B-bases. It is proven that the minimal eigenvalue and singular value of a collocation matrix of a normalized B-basis is bounded below by the minimal eigenvalue and singular value of the corresponding collocation matrix of any normalized totally positive basis of the same space. The optimal conditioning for the 8-norm of a collocation matrix of a normalized B-basis among all the normalized totally positive bases of a space of functions is also shown. Numerical examples confirm the theoretical results and answer related questions.
Idioma: Inglés
DOI: 10.1007/s00211-020-01135-x
Año: 2020
Publicado en: NUMERISCHE MATHEMATIK 146 (2020), 105-118
ISSN: 0029-599X

Factor impacto JCR: 2.223 (2020)
Categ. JCR: MATHEMATICS, APPLIED rank: 59 / 265 = 0.223 (2020) - Q1 - T1
Factor impacto SCIMAGO: 2.214 - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2026-01-15-12:36:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2026-01-15, última modificación el 2026-01-15


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)