Experimental and Numerical Investigation of Levitation Force Parameters of Novel Multisurface Halbach HTS-PMG Arrangement for Superconducting Maglev System
Resumen: We have designed multisurface Halbach high temperature superconductor-permanent magnetic guideway (HTS-PMG) arrangements for magnetically levitated transportation (Maglev) and investigated the static force parameters in addition to the dynamic response characteristics. Three different Halbach HTS-PMG arrangements were used with multisurface (6 HTS, 4 HTS) and single surface (2 HTS) configurations and static and dynamic measurements were carried out in three different field cooling heights (FCHs). The bigger vertical loading capacity and wider loading gap were obtained with multisurface Halbach HTS-PMG arrangements. In addition, nearly four times bigger guidance force values of multisurface arrangements than that of single surface one indicates that the side HTSs in multisurface arrangements make a significant contribution to the guidance force and thus lateral movement stability of Maglev systems. Both the vertical and lateral dynamic stiffness values increased with decreasing FCH and it can be also said that the dynamic stiffness properties of Maglev systems can be enhanced especially in lateral direction by using the multisurface Halbach HTS-PMG arrangements. Understanding of these experimental observations is supported by dedicated theoretical modelling through a 2-D approximation of the system. We show that by using a single material parameter (the critical current density ${{\boldsymbol{J}}_{{\bf c}}}$) for the whole superconducting set, one may satisfactorily predict the complete series of experiments. The static and dynamic parameters obtained from this study and the results of dedicated theoretical modeling for single-surface and multisurface HTS-PMG arrangements are thought to be helpful for the researchers working on static and dynamic performances of HTS Maglev systems. © 2002-2011 IEEE.
Idioma: Inglés
DOI: 10.1109/TASC.2021.3106816
Año: 2021
Publicado en: IEEE Transactions on Applied Superconductivity 31, 7 (2021), [13 pp.]
ISSN: 1051-8223

Factor impacto JCR: 1.949 (2021)
Categ. JCR: PHYSICS, APPLIED rank: 108 / 161 = 0.671 (2021) - Q3 - T3
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 181 / 274 = 0.661 (2021) - Q3 - T3

Factor impacto CITESCORE: 3.5 - Engineering (Q2) - Physics and Astronomy (Q2) - Materials Science (Q2)

Factor impacto SCIMAGO: 0.443 - Electrical and Electronic Engineering (Q2) - Condensed Matter Physics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/ENE2017-83669-C4-1-R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T54-17R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2026-01-22-16:07:16)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física de la Materia Condensada



 Registro creado el 2026-01-22, última modificación el 2026-01-22


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)