Evaluation of T-wave alternans activity under stress conditions after 5 d and 21 d of sedentary head-down bed rest
Resumen: It is well known that prolonged microgravity leads to cardiovascular deconditioning, inducing significant changes in autonomic control of the cardiovascular system. This may adversely influence cardiac repolarization, and provoke cardiac rhythm disturbances. T-wave alternans (TWA), reflecting temporal and spatial repolarization heterogeneity, could be affected. The aim of this work was to test the hypothesis that 5¿d and 21¿d head-down (-6°) bed rest (HDBR) increases TWA, thus suggesting a higher underlying electrical instability and related arrhythmogenic risk. Forty-four healthy male volunteers were enrolled in the experiments as part of the European Space Agency's HDBR studies. High-fidelity ECG was recorded during orthostatic tolerance (OT) and aerobic power (AP) tests, before (PRE) and after HDBR (POST). A multilead scheme for TWA amplitude estimation was used, where non-normalized and T-wave amplitude normalized TWA indices were computed. In addition, spectral analysis of heart rate variability during OT was assessed. Both 5¿d and 21¿d HDBR induced a reduction in orthostatic tolerance time (OTT), as well as a decrease in maximal oxygen uptake and reserve capacity, thus suggesting cardiovascular deconditioning. However, TWA indices were found not to increase. Interestingly, subjects with lower OTT after 5¿d HDBR also showed higher TWA during recovery after OT testing, associated with unbalanced sympathovagal response, even before the HDBR. In contrast with previous observations, augmented ventricular heterogeneity related to 5¿d and 21¿d HDBR was not sufficient to increase TWA under stress conditions.
Idioma: Inglés
DOI: 10.1088/0967-3334/36/10/2041
Año: 2015
Publicado en: PHYSIOLOGICAL MEASUREMENT 36, 10 (2015), 2041-2055
ISSN: 0967-3334

Factor impacto JCR: 1.576 (2015)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 46 / 76 = 0.605 (2015) - Q3 - T2
Categ. JCR: PHYSIOLOGY rank: 64 / 83 = 0.771 (2015) - Q4 - T3
Categ. JCR: BIOPHYSICS rank: 54 / 72 = 0.75 (2015) - Q3 - T3

Factor impacto SCIMAGO: 0.828 - Biomedical Engineering (Q2) - Physiology (medical) (Q2) - Biophysics (Q2) - Physiology (Q3)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Exportado de SIDERAL (2026-01-30-14:51:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > teoria_de_la_senal_y_comunicaciones



 Notice créée le 2026-01-30, modifiée le 2026-01-30


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)