Two-stages optimised design of the collector field of solar power tower plants
Resumen: In solar power tower (SPT) systems, selecting the optimum location of thousands of heliostats and the most profitable tower height and receiver size remains a challenge. Given the complexity of the problem, breaking the optimisation process down into two consecutive steps is suggested here; first, a primary, or energy, optimisation, which is practically independent of the cost models, and then a main, or economic, optimisation. The primary optimisation seeks a heliostat layout supplying the maximum annual incident energy for all the explored combinations of receiver sizes and tower heights. The annual electric output is then calculated as the combination of the incident energy and the simplified (annual averaged) receiver thermal losses and power efficiencies. Finally, the figure of merit of the main optimisation is the levelised cost of electric energy (LCOE) where the capital cost models used for the LCOE calculation are reported by the System Advisor Model (SAM)-NREL and Sandia. This structured optimisation, splitting energy procedures from economic ones, enables the organisation of a rather complex process, and it is not limited to any particular power tower code. Moreover, as the heliostat field layout is already fully optimised before the economic optimisation, the profiles of the LCOE versus the receiver radius for the tower heights explored here are sharp enough to establish optima easily. As an example of the new procedure, we present a full thermo-economic optimisation for the design of the collector field of an actual SPT system (Gemasolar, 20 MWe, radially staggered surrounding field with 2650 heliostats, 15 h of storage). The optimum design found for Gemasolar is reasonably consistent with the scarce open data. Finally, optimum designs are strongly dependent on the receiver cost, the electricity tariff and the assumed maximum receiver surface temperature.
Idioma: Inglés
DOI: 10.1016/j.solener.2016.06.065
Año: 2016
Publicado en: Solar Energy 135 (2016), 884-896
ISSN: 0038-092X

Factor impacto JCR: 4.018 (2016)
Categ. JCR: ENERGY & FUELS rank: 21 / 92 = 0.228 (2016) - Q1 - T1
Factor impacto SCIMAGO: 1.504 - Renewable Energy, Sustainability and the Environment (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2015-67518-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.

Exportado de SIDERAL (2020-02-21-13:10:19)

Este artículo se encuentra en las siguientes colecciones:

 Registro creado el 2016-07-12, última modificación el 2020-02-21

Versión publicada:
Valore este documento:

Rate this document:
(Sin ninguna reseña)