Unbounded dynamics in dissipative flows: Rössler model

Blesa Moreno, Fernando (Universidad de Zaragoza) ; Barrio, Roberto (Universidad de Zaragoza) ; Serrano, Sergio (Universidad de Zaragoza)
Unbounded dynamics in dissipative flows: Rössler model
Resumen: Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.
Idioma: Inglés
DOI: 10.1063/1.4871712
Año: 2014
Publicado en: CHAOS 24 (2014), 024407 [13 pp]
ISSN: 1054-1500

Factor impacto JCR: 1.954 (2014)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 9 / 54 = 0.167 (2014) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 17 / 255 = 0.067 (2014) - Q1 - T1

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-31883
Tipo y forma: Article (Published version)
Área (Departamento): Matemática Aplicada (Departamento de Matemática Aplicada)
Área (Departamento): Física Aplicada (Departamento de Física Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Exportado de SIDERAL (2016-12-20-09:41:36)

Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada
Articles > Artículos por área > Física Aplicada

 Record created 2016-12-20, last modified 2017-03-27

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)