Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications

Urries, I. ; Muñoz, C. ; Gomez, L. (Universidad de Zaragoza) ; Marquina, C. (Universidad de Zaragoza) ; Sebastian, V. (Universidad de Zaragoza) ; Arruebo, M. (Universidad de Zaragoza) ; Santamaria, J. (Universidad de Zaragoza)
Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications
Financiación FP7 / Fp7 Funds
Resumen: PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as “theranostic” nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).
Idioma: Inglés
DOI: 10.1039/c4nr01588f
Año: 2014
Publicado en: Nanoscale 6, 15 (2014), 9230-9240
ISSN: 2040-3364

Factor impacto JCR: 7.394 (2014)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 21 / 260 = 0.081 (2014) - Q1 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 10 / 80 = 0.125 (2014) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 19 / 157 = 0.121 (2014) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 12 / 144 = 0.083 (2014) - Q1 - T1

Financiación: info:eu-repo/grantAgreement/EC/FP7/321642/EU/Development of a microfluidic platform to produce nanomaterials and assessment on new nanotechnology applications/PLATFORM2NANO
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MAT2011-24988
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-01-26-09:51:01)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2016-12-21, última modificación el 2023-01-26


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)