Resumen: Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green’s functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems. Idioma: Inglés DOI: 10.1103/PhysRevA.84.033410 Año: 2011 Publicado en: PHYSICAL REVIEW A 84, 3 (2011), 033410 [7 pp] ISSN: 1050-2947 Factor impacto JCR: 2.878 (2011) Categ. JCR: OPTICS rank: 10 / 78 = 0.128 (2011) - Q1 - T1 Categ. JCR: PHYSICS, ATOMIC, MOLECULAR & CHEMICAL rank: 10 / 33 = 0.303 (2011) - Q2 - T1 Financiación: info:eu-repo/grantAgreement/EUR/e-I3/ETSF-211956 Financiación: info:eu-repo/grantAgreement/ES/MICINN/FIS2009-13364-C02-01 Financiación: info:eu-repo/grantAgreement/ES/MICINN/TEC2010-1573 Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2010-21282-C02-01 Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Física de la Materia Condensada (Departamento de Física de la Materia Condensada)