A singularly perturbed convection–diffusion problem with a moving pulse
Resumen: A singularly perturbed parabolic equation of convection–diffusion type is examined. Initially the solution approximates a concentrated source. This causes an interior layer to form within the domain for all future times. Using a suitable transformation, a layer adapted mesh is constructed to track the movement of the centre of the interior layer. A parameter-uniform numerical method is then defined, by combining the backward Euler method and a simple upwinded finite difference operator with this layer-adapted mesh. Numerical results are presented to illustrate the theoretical error bounds established.
Idioma: Inglés
DOI: 10.1016/j.cam.2017.03.003
Año: 2017
Publicado en: Journal of Computational and Applied Mathematics 321 (2017), 371-388
ISSN: 0377-0427

Factor impacto JCR: 1.632 (2017)
Categ. JCR: MATHEMATICS, APPLIED rank: 49 / 252 = 0.194 (2017) - Q1 - T1
Factor impacto SCIMAGO: 0.938 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-75139-R
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2019-07-09-11:46:30)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-05-11, last modified 2019-07-09


Preprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)