An arithmetic Zariski pair of line arrangements with non-isomorphic fundamental group
Resumen: In a previous work, the third named author found a combinatorics of line arrangements whose realizations live in the cyclotomic group of the fifth roots of unity and such that their non-complex-conjugate embedding are not topologically equivalent in the sense that they are not embedded in the same way in the complex projective plane. That work does not imply that the complements of the arrangements are not homeomorphic. In this work we prove that the fundamental groups of the complements are not isomorphic. It provides the first example of a pair of Galois-conjugate plane curves such that the fundamental groups of their complements are not isomorphic (despite the fact that they have isomorphic profinite completions).
Idioma: Inglés
DOI: 10.1007/s13398-016-0298-y
Año: 2017
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 111, 2 (2017), 377-402
ISSN: 1578-7303

Factor impacto JCR: 1.074 (2017)
Categ. JCR: MATHEMATICS rank: 56 / 309 = 0.181 (2017) - Q1 - T1
Factor impacto SCIMAGO: 0.493 - Computational Mathematics (Q2) - Analysis (Q3) - Geometry and Topology (Q3) - Algebra and Number Theory (Q3) - Applied Mathematics (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-45710-C2-1-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)

Exportado de SIDERAL (2019-11-13-13:45:17)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2017-06-12, modifiée le 2019-11-13


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)