Generalized Cesaro operators, fractional finite differences and Gamma functions
Resumen: In this paper, we present a complete spectral research of generalized Cesaro operators on Sobolev-Lebesgue sequence spaces. The main idea is to subordinate such operators to suitable Co-semigroups on these sequence spaces. We introduce that family of sequence spaces using the fractional finite differences and we prove some structural properties similar to classical Lebesgue sequence spaces. In order to show the main results about fractional finite differences, we state equalities involving sums of quotients of Euler's Gamma functions. Finally, we display some graphical representations of the spectra of generalized Cesaro operators.
Idioma: Inglés
DOI: 10.1016/j.jfa.2017.10.010
Año: 2018
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 274, 5 (2018), 1424-1465
ISSN: 0022-1236

Factor impacto JCR: 1.637 (2018)
Categ. JCR: MATHEMATICS rank: 28 / 313 = 0.089 (2018) - Q1 - T1
Factor impacto SCIMAGO: 2.47 - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E64
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-77710-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2020-01-08-09:29:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2018-11-07, last modified 2020-01-08


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)