Orthogonal basis for the optical transfer function
Resumen: We propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 = OTFperfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.
Idioma: Inglés
DOI: 10.1364/AO.55.009688
Año: 2016
Publicado en: APPLIED OPTICS 55, 34 (2016), 9688-9694
ISSN: 1559-128X

Factor impacto JCR: 1.65 (2016)
Categ. JCR: OPTICS rank: 50 / 92 = 0.543 (2016) - Q3 - T2
Factor impacto SCIMAGO: 0.694 - Electrical and Electronic Engineering (Q1) - Engineering (miscellaneous) (Q1) - Atomic and Molecular Physics, and Optics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2014-52859-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-58303-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2020-02-21-13:18:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2019-01-30, modifiée le 2020-02-21


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)