The use of two-point Taylor expansions in singular one-dimensional boundary value problems I
Resumen: We consider the second-order linear differential equation (x+1)y¿+f(x)y'+g(x)y=h(x) in the interval (-1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x=±1 containing the interval [-1, 1]. Then, the end point of the interval x=-1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2018.03.041
Año: 2018
Publicado en: Journal of Mathematical Analysis and Applications 463, 2 (2018), 708-725
ISSN: 0022-247X

Factor impacto JCR: 1.188 (2018)
Categ. JCR: MATHEMATICS rank: 65 / 313 = 0.208 (2018) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 117 / 254 = 0.461 (2018) - Q2 - T2

Factor impacto SCIMAGO: 0.966 - Applied Mathematics (Q2) - Analysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2014-52859-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2019-11-26-13:40:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2019-03-26, last modified 2019-11-26


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)