Distribution of mass in high-dimensional convex bodies
Resumen: In this paper we will explore the interaction between convex geometry and proba-bility in the study of the distribution of volume in high-dimensional convex bodies. On the one hand, a convex body K in Rn can be understood as a probability space whenthe normalized Lebesgue measure is considered. Thus, probabilistic tools become veryhandy in the study of the behavior of a random vector uniformly distributed inK.This leads to the understanding of how the volume is distributed in a convex body andthe obtention of geometric inequalities. On the other hand, when considering lower-dimensional marginals of the uniform probability measure onK, we leave the class ofuniform probabilities on convex bodies but remain in the class of log-concave probabilities. Many geometric inequalities can be extended to the context of log-concaveprobabilities, leading to functional inequalities for log- concave functions.
Idioma: Inglés
Año: 2017
Publicado en: Revista de la Academia de Ciencias Exactas, Físico-Químicas y Naturales de Zaragoza 72 (2017), 7-32
ISSN: 0370-3207

Originalmente disponible en: Texto completo de la revista

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
Tipo y forma: Article (PostPrint)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2020-11-30-07:57:32)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2019-04-02, last modified 2020-11-30


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)