Distribution of mass in high-dimensional convex bodies
Resumen: In this paper we will explore the interaction between convex geometry and proba-bility in the study of the distribution of volume in high-dimensional convex bodies. On the one hand, a convex body K in Rn can be understood as a probability space whenthe normalized Lebesgue measure is considered. Thus, probabilistic tools become veryhandy in the study of the behavior of a random vector uniformly distributed inK.This leads to the understanding of how the volume is distributed in a convex body andthe obtention of geometric inequalities. On the other hand, when considering lower-dimensional marginals of the uniform probability measure onK, we leave the class ofuniform probabilities on convex bodies but remain in the class of log-concave probabilities. Many geometric inequalities can be extended to the context of log-concaveprobabilities, leading to functional inequalities for log- concave functions.
Idioma: Inglés
Año: 2017
Publicado en: Revista de la Academia de Ciencias Exactas, Físico-Químicas y Naturales de Zaragoza 72 (2017), 7-32
ISSN: 0370-3207

Originalmente disponible en: Texto completo de la revista

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
Tipo y forma: Artículo (PostPrint)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-11-30-07:57:32)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-04-02, última modificación el 2020-11-30


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)