The Poincaré conjecture: a problem solved after a century of new ideas and continued work
Resumen: The Poincaré conjecture is a topological problem established in 1904 by the French mathematician Henri Poincaré. It characterises three-dimensional spheres in a very simple way. It uses only the first invariant of algebraic topology – the fundamental group – which was also defined and studied by Poincaré. The conjecture implies that if a space does not have essential holes, then it is a sphere. This problem was directly solved between 2002 and 2003 by Grigori Perelman, and as a consequence of his demonstration of the Thurston geometrisation conjecture, which culminated in the path proposed by Richard Hamilton.
Idioma: Inglés
DOI: 10.7203/metode.8.9265
Año: 2018
Publicado en: Mètode (Valencia) 8 (2018), 83-91
ISSN: 1133-3987

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-45710-C2-1-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-76868-C2-2-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2019-07-02-08:15:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2019-07-02, last modified 2019-07-02


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)