Generalized trigonometric interpolation
Resumen: This article proposes a generalization of the Fourier interpolation formula, where a wider range of the basic trigonometric functions is considered. The extension of the procedure is done in two ways: adding an exponent to the maps involved, and considering a family of fractal functions that contains the standard case. The studied interpolation converges for every continuous function, for a large range of the nodal mappings chosen. The error of interpolation is bounded in two ways: one theorem studies the convergence for Hölder continuous functions and other develops the case of merely continuous maps. The stability of the approximation procedure is proved as well.
Idioma: Inglés
DOI: 10.1016/j.cam.2018.08.003
Año: 2019
Publicado en: Journal of Computational and Applied Mathematics 354 (2019), 152-162
ISSN: 0377-0427

Factor impacto JCR: 2.037 (2019)
Categ. JCR: MATHEMATICS, APPLIED rank: 43 / 260 = 0.165 (2019) - Q1 - T1
Factor impacto SCIMAGO: 0.87 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2015-05
Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2017-03
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-01-28-15:02:21)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2019-08-19, last modified 2025-01-28


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)