Generalized trigonometric interpolation
Resumen: This article proposes a generalization of the Fourier interpolation formula, where a wider range of the basic trigonometric functions is considered. The extension of the procedure is done in two ways: adding an exponent to the maps involved, and considering a family of fractal functions that contains the standard case. The studied interpolation converges for every continuous function, for a large range of the nodal mappings chosen. The error of interpolation is bounded in two ways: one theorem studies the convergence for Hölder continuous functions and other develops the case of merely continuous maps. The stability of the approximation procedure is proved as well.
Idioma: Inglés
DOI: 10.1016/j.cam.2018.08.003
Año: 2019
Publicado en: Journal of Computational and Applied Mathematics 354 (2019), 152-162
ISSN: 0377-0427

Factor impacto JCR: 2.037 (2019)
Categ. JCR: MATHEMATICS, APPLIED rank: 43 / 260 = 0.165 (2019) - Q1 - T1
Factor impacto SCIMAGO: 0.87 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2015-05
Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2017-03
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-01-28-15:02:21)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2019-08-19, modifiée le 2025-01-28


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)