Resumen: In this paper, we study high-dimensional random projections of ln p-balls. More precisely, for any n ¿ N let En be a random subspace of dimension kn ¿ {1, . . ., n} and Xn be a random point in the unit ball of ln p. Our work provides a description of the Gaussian fluctuations of the Euclidean norm ||PEnXn|| 2 of random orthogonal projections of Xn onto En. In particular, under the condition that kn ¿ 8 it is shown that these random variables satisfy a central limit theorem, as the space dimension n tends to infinity. Moreover, if kn ¿ 8 fast enough, we provide a Berry-Esseen bound on the rate of convergence in the central limit theorem. At the end, we provide a discussion of the large deviations counterpart to our central limit theorem. Idioma: Inglés DOI: 10.3150/18-BEJ1084 Año: 2019 Publicado en: BERNOULLI 25, 4 A (2019), 3139-3174 ISSN: 1350-7265 Factor impacto JCR: 1.496 (2019) Categ. JCR: STATISTICS & PROBABILITY rank: 45 / 124 = 0.363 (2019) - Q2 - T2 Factor impacto SCIMAGO: 1.993 - Statistics and Probability (Q1)