A note on Appell sequences, Mellin transforms and Fourier series
Resumen: A large class of Appell polynomial sequences {p n (x)} n=0 8 are special values at the negative integers of an entire function F(s, x), given by the Mellin transform of the generating function for the sequence. For the Bernoulli and Apostol-Bernoulli polynomials, these are basically the Hurwitz zeta function and the Lerch transcendent. Each of these have well-known Fourier series which are proved in the literature using various techniques. Here we find the latter Fourier series by directly calculating the coefficients in a straightforward manner. We then show that, within the context of Appell sequences, these are the only cases for which the polynomials have uniformly convergent Fourier series. In the more general context of Sheffer sequences, we find that there are other polynomials with uniformly convergent Fourier series. Finally, applying the same ideas to the Fourier transform, considered as the continuous analog of the Fourier series, the Hermite polynomials play a role analogous to that of the Bernoulli polynomials.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2019.04.019
Año: 2019
Publicado en: Journal of Mathematical Analysis and Applications 476, 2 (2019), 836-850
ISSN: 0022-247X

Factor impacto JCR: 1.22 (2019)
Categ. JCR: MATHEMATICS rank: 77 / 324 = 0.238 (2019) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 124 / 260 = 0.477 (2019) - Q2 - T2

Factor impacto SCIMAGO: 1.021 - Applied Mathematics (Q1) - Analysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E64
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-65888-C4-4-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2020-07-16-08:47:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2020-04-15, modifiée le 2020-07-16


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)