Magnetic hyperthermia with e-Fe2O3 nanoparticles

Gu, Y. ; Yoshikiyo, M. ; Namai, A. ; Bonvin, D. ; Martinez, A. (Universidad de Zaragoza) ; Piñol, R. (Universidad de Zaragoza) ; Téllez, P. (Universidad de Zaragoza) ; Silva, N.J.O. ; Ahrentorp, F. ; Johansson, C. ; Marco-Brualla, J. ; Moreno-Loshuertos, R. (Universidad de Zaragoza) ; Fernández-Silva, P. (Universidad de Zaragoza) ; Cui, Y. ; Ohkoshi, S.I. ; Millán, A. (Universidad de Zaragoza)
Magnetic hyperthermia with e-Fe2O3 nanoparticles
Financiación H2020 / H2020 Funds
Resumen: Biocompatibility restrictions have limited the use of magnetic nanoparticles for magnetic hyperthermia therapy to iron oxides, namely magnetite (Fe3O4) and maghemite (ε-Fe2O3). However, there is yet another magnetic iron oxide phase that has not been considered so far, in spite of its unique magnetic properties: ε-Fe2O3. Indeed, whereas Fe3O4 and ε-Fe2O3 have a relatively low magnetic coercivity, ε-Fe2O3 exhibits a giant coercivity. In this report, the heating power of ε-Fe2O3 nanoparticles in comparison with ε-Fe2O3 nanoparticles of similar size (~20 nm) was measured in a wide range of field frequencies and amplitudes, in uncoated and polymer-coated samples. It was found that ε-Fe2O3 nanoparticles primarily heat in the low-frequency regime (20-100 kHz) in media whose viscosity is similar to that of cell cytoplasm. In contrast, ε-Fe2O3 nanoparticles heat more effectively in the high frequency range (400-900 kHz). Cell culture experiments exhibited no toxicity in a wide range of nanoparticle concentrations and a high internalization rate. In conclusion, the performance of ε-Fe2O3 nanoparticles is slightly inferior to that of ¿-Fe2O3 nanoparticles in human magnetic hyperthermia applications. However, these ε-Fe2O3 nanoparticles open the way for switchable magnetic heating owing to their distinct response to frequency.
Idioma: Inglés
DOI: 10.1039/d0ra04361c
Año: 2020
Publicado en: RSC Advances 10, 48 (2020), 28786-28797
ISSN: 2046-2069

Factor impacto JCR: 3.361 (2020)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 81 / 178 = 0.455 (2020) - Q2 - T2
Factor impacto SCIMAGO: 0.746 - Chemistry (miscellaneous) (Q1) - Chemical Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E11-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/801305/EU/Nanoparticles-based 2D thermal bioimaging technologies/NanoTBTech
Financiación: info:eu-repo/grantAgreement/EC/H2020/829162/EU/Redesigning biocatalysis: Thermal-tuning of one-pot multienzymatic cascades by nanoactuation/HOTZYMES
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-095795-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): División: Serv. Transversales (Serv.Gral. Apoyo Investigación)
Área (Departamento): Área Bioquímica y Biolog.Mole. (Dpto. Bioq.Biolog.Mol. Celular)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2023-03-23-12:57:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2020-09-30, last modified 2023-03-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)